Parallel page processing
with Asp.Net

@O — O
CPIOZOIO]

@@ «— O



Overview

* Page rendering slows down when the thread
rendering the page spends too much of its
time waiting

* Explicit use of threads is cumbersome,
requires quite a bit of code, and is error-prone

* Asp.Net 2.0+ has build-in support for
asynchronous page processing



Inside w3wp.exe

* Process maintains a thread pool for servicing
Incoming requests

* Machine.config defines default pool setup

<system.web>
<processModel autoConfig="true"/>
<!--<processModel maxWorkerThreads="20" .../>-->

</system.web>

* autoConfig means Asp.Net determines the
value for maxWorkerThreads based on
hardware configuration (# of CPUs, cores, etc.)



Page processing overview

When life
cycle
completes,
worker
thread sends

Worker
thread
returns to
thread pool
waiting for
next request

Queue Assign

request processing of
waiting for page to

worker worker

Worker
thread
manages

thread thread page lifecycle response to
client

 Too many long-running worker threads
deplete the thread pool. Future requests are
queued, making the site appear slow



Synchronous page processing

One worker thread responsible
for entire page lifecycle

Control code get executed on
the same worker thread as

page
Worker thread may spent
much of its time waiting

Event handlers of controls gets
called in the same order as
event handlers of page

Symchromoms Page

PreLoad

LoadComplete

PreRender

SaveStateComplete

H“I* E“I* Iqu.I* E“H*H

< Requast

i~ Response



Asynchronous page processing

Asynchrensus Page

Page/control executes code
within Begin/End on
separate thread

A worker threat continues F ten)
rendering other controls on .
page LeadComplete
Page is output to client
when all async calls has
returned and rendering is
complete

Multiple worker threads => preenderCemplete
faster page rendering -

| — Request

SaveStateComplefe

CHHT

b-Responss



Example

Default.aspx WaitControl.ascx.cs

public partial class WaitControl
<%@ Page Async="true" private delegate woid cTaskDelegate();
private AsyncTaskDelegate _task:

state shared between threads

DefaUIt.aSpX.CS ;i’ivate DateTime _start, _finish;

public partial class Default : Page { protected void Page_Load(cbject sender, Eventhrgs e} {
protected void Page Load(object sender, Ev { — Debug.Writeline ("Page Load: " + Thread.CurrentThread.ManagedThreadId);
for (int i = 0; i < 5; i++4) var task = new FagelhsyncTask (BeginfAsync, EndAsync, null, null, true):
Controls.Add (new WaitContraol()): Page.RegisterksyncTask (task):

private IAsyncResult BeginfAsync {object sroc, Eventhrgs args,

LzyncCallback callback, object data) {

Debugger output

gg p _ TaskDelegate (DoWark) ;
Page_Load: 10 return _task.BeginInvoke (callback, data);
Page Load: 10 )

Page Load: 10

H

Page Load: 10 private wold DoWork() {
- : 3 Debug.WriteLine ("DoWork: " 4 Thread.CurrentThread.ManagedThreadId) :;
Page_ioaj. 10 Thread.Sleep (5000) ;
DoWork:
DoWork: 10
DoWork: O private woid EndAsync (IAsyncResult result)
DoWork: 8 ﬁ _finish = DateTime.Now;
DoWork: 11
Render: 11 15:16:13 15:16:18 protected override vold Render (HtmlTextWriter writer) {
Render: 11 15:16:13 15:16:18 Debug.Writeline ("Render: " +

Thread.CurrentThread.ManagedThreadId + " " +
_start.ToLongTimeString() + " " +
_finish.ToLongTimeString()):

Render: 11 15:16:13 15:16:18
Render: 11 15:16:13 15:16:18
Render: 11 15:16:13 15:16:19

H



Conclusion

* With little effort asynchronous processing can
speed up page rendering

* Make judicious use of asynchronous
processing

* Optimizing away one bottleneck most likely
makes another one appear elsewhere



